

## SIMULATION OF A HIGH-b DISRUPTION IN DIII-D SHOT #87009

S. E. Kruger and D. D. Schnack

Science Applications International Corp. San Diego, CA USA





# Mode Passing Through Instability Point Has Faster-Than-Exponential Growth

- In experiment mode grows faster than exponential
- Theory of ideal growth in response to slow heating (Callen, Hegna, Rice, Strait, and Turnbull, Phys. Plasmas 6, 2963 (1999)):

Heat slowly through critical *b*:  $\mathbf{b} = \mathbf{b}_c (1 + \mathbf{g}_h t)$ 

Ideal MHD: 
$$\mathbf{w}^2 = -\hat{\mathbf{g}}_{MHD}^2 (\mathbf{b} / \mathbf{b}_c - 1)$$
  $\rightarrow$   $\mathbf{g}(t) = \hat{\mathbf{g}}_{MHD} \sqrt{\mathbf{g}_h t}$ 

**Perturbation growth:** 

$$\frac{d\mathbf{x}}{dt} = \mathbf{g}(t)\mathbf{x} \rightarrow \mathbf{x} = \mathbf{x}_0 \exp[(t/t)^{3/2}], \quad \mathbf{t} = (3/2)^{2/3} \hat{\mathbf{g}}_{MHD}^{-2/3} \mathbf{g}_h^{-1/3}$$

As 
$$\hat{\boldsymbol{g}}_{MHD} \rightarrow 0$$
,  $\boldsymbol{g}_h \rightarrow 0$ 

mode does not grow because it is exactly at marginal point





# DIII-D SHOT #87009 Observes a Mode on Hybrid Time Scale As Predicted By Analytic Theory

ullet High-b disruption slow heating



 Growth is slower than ideal, but faster than resistive







# Initial Simulations Performed Using Fixed Boundary

- Equilibrium reconstruction from experimental data
- Negative central shear
- Gridding based on equilibrium flux surfaces
  - Packed at rational surfaces
  - Bi-cubic finite elements









# **Fixed Boundary Simulations Require Going to Higher Beta**

- Conducting wall raises ideal stability limit
  - Need to run near ritical  $b_{\rm N}$  for ideal instability NIMROD gives slightly larger ideal growth rate than GATO
- NIMROD finds resistive interchange mode below ideal stability boundary







### Nonlinear Simulations Find Faster-Than-Exponential Growth As Predicted By Theory

- Initial condition: equilibrium below ideal marginal  $b_{\rm N}$
- Use resistive MHD
- Impose heating source proportional to equilibrium pressure profile

$$\frac{\P P}{\P t} = \dots + g_H P_{eq}$$

$$\Rightarrow b_N = b_{Nc} (1 + g_H t)$$

 Follow nonlinear evolution through heating, destabilization, and saturation Log of magnetic energy in n = 1 mode vs. time  $S = 10^6$  Pr = 200  $g_H = 10^3$  sec<sup>-1</sup>







# Scaling With Heating Rate Gives Good Agreement With Theory

- NIMROD simulations also display super-exponential growth
- Simulation results with different heating rates are well fit by  $x \sim \exp[(t-t_0)/t]^{3/2}$
- Time constant scales as

$$t \sim g_{MHD}^{-0.72} g_H^{-0.28}$$

• Compare with theory:

$$t = (3/2)^{2/3} \hat{g}_{MHD}^{-2/3} g_h^{-1/3}$$

 Discrepancy possibly due to non-ideal effects

### Log of magnetic energy vs. $(t - t_0)^{3/2}$ for 2 different heating rates







### Free-Boundary Simulations Based on EFIT Reconstruction

- Pressure raised 8.7% above "best fit" EFIT
- Boundary of computational domain is vacuum vessel, NOT the limiter.
- Uses Fourier version of actual conducting wall (based on representation from M. Chance's VACUUM code)
- Works well for B<sub>n</sub>=0 boundary conditions
- V<sub>n</sub>=0 boundary conditions OK because this allows flux from limiter, like experiment.







### Initial Simulations Above Ideal Marginal Stability Point Look Promising

- Simulation includes:
  - -n=0, 1, 2
  - Anisotropic heat conduction  $k_{\text{par}}/k_{\text{perp}}{=}10^8$
- Ideal modes grow with finite resistivity (S = 10<sup>5</sup>)
- Because magnetic field becomes stochastic, heat lost to wall preferentially at divertor by parallel heat conduction
- Disruption is very different from conventional wisdom of plasma hitting the wall.







### Is Heat Flux at Wall Too High?

- Time for crash ~ 200 msec.
- Energy lost: 1 MJ
- Power ~ 5 GW
- Assuming area of wall ~50 m²:
   Average wall load = 100 MW/m² !!!
- ITER design: Primary wall max. = 0.5 MW/m<sup>2</sup>
  Port limiter max. = 8.0 MW/m<sup>2</sup>
- ⇒ Might need model for radiation heat losses
  Beginning collaboration with D. Whyte, UW-Madison





#### **Conclusions**

### Fixed-boundary simulations

- Heating through b limit
- Super-exponential growth, in agreement with experiment and theory

### • Free-boundary simulations

- Initial low S results look promising:
  - Can simulate non-axisymmetric modes through loss of internal energy due to anisotropic heat conduction.
  - Loss of internal energy is due to rapid stochastization of the field, and not a violent shift of the plasma into the wall.





#### **Future Work**

### **Future work will investigate:**

- Heating the plasma through the marginal point
- Simple models of radiative heat loss
- Higher Lundquist values
- More toroidal mode numbers
- Better diagnostics for detailed comparisons with experiments
- More recent simulations of disruption mitigation experiments

Free boundary simulatins provide new opportunities for MHD simulations to contribute to understanding of edge physics.



